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Abstract

Following the ideas of Connes and Moscovici, we describe two spectral triples related to the
Kronecker foliation, whose generalized Dirac operators are related to first and second order signature
operators. We also consider the corresponding differential calculiΩD , which are drastically different
in the two cases. For the second order signature operator we calculate the Chern character of the
spectral triple and the Dixmier trace of certain powers of its Dirac operator. As a side-remark, we
give a description of a known calculus on the two-dimensional noncommutative torus in terms of
generators and relations.
© 2002 Published by Elsevier Science B.V.
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1. Introduction

In Connes’ approach to noncommutative differential geometry, the notion of a spectral
triple plays an essential role, see[1]. It encodes the differential and Riemannian structure
of the noncommutative space as well as its dimension. From the physical point of view,
spectral triples have been used to construct unified field theoretical models, in particular the
standard model (see[1,2]), and also models including gravitation[3–5]. From the mathe-
matical point of view, only a few types of noncommutative spaces have been used in these
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examples: commutative algebras of smooth functions on a manifold[1], finite dimensional
algebras (for a classification of spectral triples in this case, see[6,7]) and products of both.
In [8], it was shown that it is not straightforward to define spectral triples related to covariant
differential calculi on quantum groups. Explicit examples of spectral triples have also been
described for the irrational rotation algebra and higher dimensional noncommutative tori
[1,9]. For these examples, the data of the triple were chosen according to physical needs
or taking advantage of special structures available in the underlying algebra. An important
part of the information needed for physical purposes is the explicit form of the differen-
tial calculus of a spectral triple. Such calculi have been analysed in the above-mentioned
cases[1,2,10,11]. In [12], it has been shown that the extra structure of a finitely gener-
ated projective module allows to introduce the graded algebra of differential-form-valued
endomorphisms which gives a natural mathematical language to build unified field theo-
retical models in the spirit of the Mainz-Marseille approach[13]. In [14,15], the notion
of spectral triple itself has been modified and enriched using ideas from supersymmet-
ric quantum theory. One arrives at noncommutative structures generalizing classical geo-
metrical structures (Riemannian, symplectic, Hermitian, Kähler, etc. structures). Physical
hopes are mainly directed to superconformal field theories (with noncommutative target
spaces).

Recently, see[16], Connes and Moscovici have described a method which makes it pos-
sible to construct spectral triples in a systematic way for crossed product algebras related to
foliations. Let(M,F) be a regular foliation of a smooth manifoldM with Euclidean struc-
tures on both the corresponding distribution and the normal bundle. There is an associated
spectral triple for the crossed product algebraC∞(M) � Γ , whereΓ is a group of diffeo-
morphisms preserving these structures. The corresponding Dirac operator is a hypoelliptic
operator which is closely related to the signature operator of the foliated manifold. This
signature operator is a modification of the standard signature operator in differential geom-
etry, see[17]. The explicit form of the spectral triple makes it then possible to calculate its
Chern character and also the Dixmier trace of hypoelliptic operators.

In this paper, we construct explicitly two spectral triples related to the Kronecker foliation.
We choose as diffeomorphism group, the groupR which defines the foliation by its action
onT

2 and obviously preserves natural translation invariant Euclidean structures. Thus, we
arrive at the algebraC∞(T2)�R, whoseC version is known to be Morita equivalent to the
irrational rotation algebra (noncommutative torus), see[9,18]. The Dirac operator of the first
spectral triple (which has dimension 2) is closely related to the ordinary signature operator on
T

2. For the construction of the second triple (of dimension 3) we follow the strategy proposed
in [16]. The corresponding signature operators and henceforth also the Dirac operators can
be diagonalized explicitly in both cases. Then we pass to the differential calculi associated
to the spectral triples constructed before. It turns out that for the triple related to the first
order signature operator the differential calculus can be completely determined. Restricted
to C∞(T2) it projects down to the de Rham calculus onT

2. The analysis of the differential
calculus for the second triple turns out to be much more involved. We show that for the
restriction of this triple to the subalgebraC∞(T2) (i.e. choosing the trivial diffeomorphism
group) the corresponding one forms give just the universal calculus onC∞(T2). Then we
pass to the explicit calculations of the Chern character of the spectral triple and the Dixmier
trace of its Dirac operator.
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In Appendix Bwe have added the explicit description of the differential calculus for
the spectral triple related to the irrational rotation algebra, see[1,9], which has properties
similar to the calculus associated to the linear signature operator.

2. The spectral triple related to a foliation

For the convenience of the reader, we recall here the definition of a spectral triple and
the differential calculus related to such a triple[1,9].

Definition 1. A spectral triple(A,H, D) consists of a∗-algebraA, a Hilbert spaceH and
an unbounded operatorD onH, such that:

(i) A acts by a∗-representationπ in the algebraB(H) of bounded operators onH,
(ii) the commutators [D, π(a)], a ∈ A, are bounded and

(iii) the operatorD has discrete spectrum with finite multiplicity.

A spectral triple is said to have dimensionn, if the eigenvalues (with multiplicity)µk of
|D| fulfil lim k→∞(µk/k1/n) = C �= 0.

We will have no need to refer to gradings or real structures usually included in the
definition of a spectral triple, and also not to more general notions of dimension.

The representationπ of A in B(H) can be extended to a representationπ∗ : Ω(A) →
B(H) of the universal differential calculusΩ(A) by

πn

(∑
k

ak
0 dak

1 · · ·dak
n

)
=
∑

k

π(ak
0)[D, π(ak

1)] · · · [D, π(ak
n)].

If J0 := ⊕nkerπn, thenJ := J0 + dJ0 is a differential ideal, and one arrives at the
differential calculusΩD(A),

Ωn
D(A) := Ωn(A)

J n
.

Note that, ifπ is faithful, there are isomorphisms

Ω1
D(A) � π1(Ω1(A)), (2.1)

and

Ω2
D(A) � π2(Ω2(A))

π2(dJ 1
0 )

. (2.2)

Now we review shortly the procedure given in[16], which relates a spectral triple to
a regular foliation of a smooth manifold. LetM be a compact manifold with a foliation
given by an integrable distributionV ⊂ TM. The normal bundle of the foliation isN :=
TM/V , with canonical projectionρ : TM → N . Assume further that bothV andN are
equipped with Euclidean fibre metrics and with an orientation (i.e. there are distinguished
nowhere vanishing sectionsωV , ωN of the exterior bundles

∧v
V ,
∧n

N (v = dimV, n =
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dimN )). Furthermore,ωV andωN also define a nonvanishing section of
∧v

V ∗⊗∧n
N∗ �∧v+n

T ∗M, i.e. a volume form onM. The bundle of interest for us is

E =
∧

V ∗
C
⊗
∧

N∗
C

.

Obviously, the metrics onV andN give rise to Hermitian metrics on
∧

V ∗
C

and
∧

N∗
C

and
thus also onE. The orientationsωV andωN can be mapped by means of the metrics to
sectionsγV of

∧v
V ∗
C

andγN of
∧n

N∗
C

which can be used, together with the metrics, to
define an analogue of the Hodge star on the exterior bundles

∧
V ∗
C

and
∧

N∗
C

. We choose
a variant of the∗-operation such that∗2

VC
= 1 and∗2

NC
= 1, i.e. ∗VC and∗NC can be

considered asZ2-grading operators (cf.[19]). Thus, the space of sections ofE has a natural
inner product, and we denote byH = L2(M, E) the Hilbert space of square integrable
sections of this bundle. From now on, we always consider complexified vector bundles, but
omit the subscriptC.

In order to construct a generalized Dirac operator, a longitudinal differential dL and
a transversal differential operator dH have to be defined. The differential dL is defined
canonically by means of the Bott connection[20] given as the partial covariant derivative
∇ : Γ (V ) × Γ (N) → Γ (N) defined by

∇XY = ρ([X, Ỹ ])

for X ∈ Γ (V ), Y ∈ Γ (N) andỸ ∈ Γ (TM) such thatρ(Ỹ ) = Y . By a standard procedure
(using the Leibniz rule and duality)∇ is extended to a differential dL : Γ (E) → Γ (E)

defined by linear mappingsΓ (
∧k

V ∗ ⊗∧l
N∗) → Γ (

∧k+1
V ∗ ⊗∧l

N∗),

dLα(X0, . . . , Xk) =
∑

i=0,...,k

(−1)i∇Xi
(α(X0, . . . , X̂i , . . . , Xk))

+
∑
i<j

(−1)i+jα([Xi, Xj ], X0, . . . , X̂i , . . . , X̂j , . . . , Xk),

Xi ∈ Γ (V ). Since the Bott connection is flat, we have d2
L = 0.

In order to define a transversal differential operator one has to choose a subbundleH ⊂
TM complementary toV . This defines a bundle isomorphismjH :

∧
V ∗ ⊗ ∧

N∗ →∧
T ∗M in the following way. Let us denote by pr∗

V and pr∗H the projections corresponding
to the decompositionTM∗ = V ∗ ⊕ H ∗, by ρH : H → N the restriction ofρ to H and by
ρ∗

H its transposed map. ThenjH is defined as the following composition:∧
V ∗⊗

∧
N∗id⊗∧ ρ∗

H→
∧

V ∗⊗
∧

H ∗
∧

pr∗V ⊗∧pr∗H→
∧

T ∗M ⊗
∧

T ∗M
⊗→∧
→

∧
T ∗M,

where⊗ →∧
denotes the replacement of the tensor product by the wedge product. Now,

the transversal operator dH is obtained from the exterior differential d by transporting with
jH and projecting to a certain homogeneous component:

∧
V ∗ ⊗∧

N∗ has an obvious
bigrading, and denoting byπ(r,s) the projector to the homogeneous component of bidegree
(r, s), one defines

dHα = π(r,s+1)(j−1
H ◦ d ◦ jH (α))
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for α ∈ Γ (
∧r

V ∗ ⊗ ∧s
N∗). The operator dH is a graded derivation of theZ2-graded

algebraΓ (
∧

V ∗ ⊗∧
N∗).

In a foliation chart, dL and dH look as follows. Let(xi, yk), i = 1, . . . , v, k = 1, . . . , n

be local coordinates ofM such thatxi are coordinates on the leaf (foliation chart). The
corresponding coordinate vector fields(∂/∂xi, ∂/∂yk) form a local frame ofTMand(∂/∂xi)

a frame ofV . The corresponding dual frame ofT ∗M consists of the differentials(dxi, dyk).
We defineθi ∈ Γ (V ∗) by θi(∂/∂xj ) = δi

j (i, j = 1, . . . , v). It is immediate from the

definition ofN that the elementsnk := (∂/∂yk) + V (k = 1, . . . , n) form a local frame
of N . The elements of the corresponding dual frame ofN∗ are denoted bynk. Finally,
we choose a local framehk of the transversal spaceH . This frame is fixed by assuming
ρH (hk) = nk. This leads to

hk = hi
k

∂

∂xi
+ ∂

∂yk
,

with coefficient functionshi
k characterizingH . Then, the elementsθi1 ∧ · · · ∧ θir ⊗ nj1 ∧

· · ·∧njs form a local frame ofE, and one can show that dL and dH are given by the following
local formulae:

dL(αi1···ir j1···js θ
i1 ∧ · · · ∧ θir ⊗ nj1 ∧ · · · ∧ njs )

= ∂αi1···ir j1···js

∂xi
θ i ∧ θi1 ∧ · · · θir ⊗ nj1 ∧ · · · ∧ njs ,

dH(αi1···ir j1···js θ
i1 ∧ · · · ∧ θir ⊗ nj1 ∧ · · · ∧ njs )

= (−1)r

(
∂

∂yk
+ hi

k

∂

∂xi

)
αi1···ir j1···js θ

i1 ∧ · · · ∧ θir ⊗ nk ∧ nj1 ∧ · · · ∧ njs

+αi1···ir j1···js

r∑
t=1

∂h
it
k

∂xl
θ i1 ∧ · · · ∧ θ l ∧ · · · ∧ θir ⊗ nk ∧ nj1 ∧ · · · ∧ njs (2.3)

(whereθ l at positiont replacesθit ). The longitudinal differential dL acts as a differential
in leaf direction, whereas dH is a sum of a principal part, which differentiates in transversal
direction, and a zero order part. As examples, let us give formulae for dH acting on functions,
(1, 0)-, (0, 1)- and(1, 1)-forms

dHf = hk(f )nk, dH(αiθ
i) = −hk(αi)θ

i ⊗ nk − αi

∂hi
k

∂xj
θj ⊗ nk,

dH(αkn
k) = hl(αk)n

l ∧ nk,

dH

(
αikθ

i ∧ nk
)
= −hl(αik)θ

i ⊗ nl ∧ nk − αik
∂hi

l

∂xj
θj ⊗ nl ∧ nk

(dH(nk) = 0). For the adjoint operators d∗L and d∗H (inH) it is difficult to write down explicit
formulae. One can show

d∗Lα = − ∗V dL ∗V +terms of order zero,
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where∗V is the (partial) Hodge operator related to the Euclidean metric and the orientation
of V . Since d∗H lowers theN∗-degree one has forα ∈ Γ (

∧r
V ∗) ≡ Γ (

∧r
V ∗ ⊗∧0

N∗)

d∗Hα = 0.

Explicit formulae for d∗H become rather complicated as, e.g., the case of(0, 1)-forms shows

d∗H(αin
i) = −gkl

N

(
hk(αl) − αmΓN

m
kl + αl

(
∂hi

k

∂xi
+ 1

2
g

ij
V hk(gVij )

))
, (2.4)

wheregkl
N = gN(nk, nl), gVij = gV (∂/∂xi, ∂/∂xj ), g

ij
V = gV (θi, θj ) are the local compo-

nents of the fibre metrics (and their duals), andΓN
m

kl are the Christoffel symbols corre-
sponding togNkl .

In [16], using dH and dL, two differential operators were introduced by

QL = dL d∗L − d∗L dL , QH = dH + d∗H,

and the mixed signature operatorQ for M, acting on a form withN -degree∂N , was defined
by

Q = QL(−1)∂N + QH. (2.5)

As noted in[16], Q is selfadjoint. Finally, a generalized Dirac operatorD is defined as the
unique selfadjoint operator such that

D|D| = Q. (2.6)

If zero is not an element of the spectrum ofQ, it is given as

D = Q|Q|−1/2 = Q(Q2)−1/4, (2.7)

as shows a straightforward argument using the spectral decomposition ofQ.
One motivation for choosing a second order longitudinal part is the following: the index

of the signature operator should not depend on the choice of the transversal subbundleH .
Usually, the index of a pseudodifferential operator only depends on its principal symbol.
However, as follows from the local formulae(2.3) and (2.4), the principal part ofQH
explicitly depends onH , the dependence being in the coefficients of the partial derivatives
with respect to leaf coordinates. It turns out that one can get rid of this dependence by
introducing a modified notion of pseudodifferential operators (ψDO′) which assigns a
degree 2 to transversal coordinates and a degree 1 to longitudinal ones. To have a contribution
also fromQL, one has to pass to a second order operator. In[16], a homotopy argument
was given to show that this does not affect the longitudinal signature class.

Let Γ be any group of diffeomorphisms ofM which preserves the distributionV and
the Euclidean metrics on bothV andN . Thenψ ∈ Γ acts via the pull back as unitary
operatorU∗

ψ onH, whereas functions fromC∞(M) act there as multiplication operators.
The crossed product algebraA := C∞(M)�Γ can be defined as the∗-subalgebra ofB(H)

generated by these two types of operators. Due toU∗
ψf = (f ◦ ψ)U∗

ψ every element ofA
is a finite sum of elementsfU∗

ψ . Then we have the following theorem, see[16].

Theorem 1. (A,H, D) is a spectral triple of dimensionv + 2n.
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Starting from the spectral triple one may now calculate several quantities related to it,
e.g., its (odd) Chern character ch∗(A,H, D) and the Dixmier trace of powers of the Dirac
operator Trω(D) (cf. [1,21]). With

F = D

|D| , (2.8)

we have for the Chern character

ch∗(A,H, D)(a0, . . . , am) = λm Tr′(a0[F, a1][F, a2] · · · [F, am]) (2.9)

for all a0, . . . , am ∈ A (m ≥ v + 2n, m odd), with

Tr′(T ) = 1
2Tr(F (FT+ TF)), (2.10)

and

λm =
√

2i(−1)m(m−1)/2Γ (1
2m + 1). (2.11)

The extension of the Dixmier trace Trω to anyψDO′ is given by

Trω(T ) = 1

v + 2n

∫
M

c(x) (2.12)

with

c(x) = 1

(2π)−(n+v)(v + 2n)

∫
‖ξ‖′=1

tr σ−(v+2n)(x, ξ)ie dξ, (2.13)

where tr is the usual matrix trace (T is in general an operator on sections of a vector bundle)
andσ−(v+2n)(x, ξ) is the homogeneous part of order−(v+2n) in the asymptotic expansion
of T in theψDO′ calculus (see[16]). Heree is the generator of the flow

Fs(ξv, ξn) = (esξv, e2sξn),

ie dξ denotes the contraction of dξ bye and the integral is taken over the (modified) cosphere
bundle overM.

3. Spectral triples for the Kronecker foliation

3.1. The crossed product algebra for the Kronecker foliation

Let us start with some conventions and notations. We consider the two-torus as the
quotientT2 = R

2/2πZ
2. Thus, we have natural local coordinates 0< ϑ1, ϑ2 < 2π .

Consider theR-manifold(T2, R, ψ), with group action

ψ : T
2 × R → T

2,

given by

ψ((ϑ1, ϑ2), t) = (ϑ1 + at, ϑ2 + bt)

with a, b ∈ R such thata > 0,a2+b2 = 1 andθ = b/a being irrational. The foliation ofT2
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by the orbits ofψ is called the Kronecker foliation. It is well known, see[22], that each leaf
of this foliation is diffeomorphic toR and lies dense inT2. The coordinate transformation

x = aϑ1 + bϑ2, y = bϑ1 − aϑ2

is orthogonal and leads to coordinates(x, y) of a foliation chart. In these coordinates,R

acts as follows:

ψ((x, y), t) = (x + t, y).

To be more precise, this is the lifted action ofR onR
2, applied to global coordinates(x, y)

obtained from global coordinates(ϑ1, ϑ2) by the orthogonal transformation. The fact that
each leaf of the foliation lies dense inT2 implies immediately the following lemma.

Lemma 1. All metricsgV andgN , invariant under the aboveR-action, are constant in any
coordinates affine with respect toϑ1 andϑ2.

We fix the constants by

gV

(
∂

∂x
,

∂

∂x

)
= gN

(
∂

∂y
,

∂

∂y

)
= 1. (3.1)

It is well known, see[23], that associated to the action of a locally compact groupK on
a manifoldM there is a transformation groupoidG. For the Kronecker foliation, we have
G = T

2 × R with range and source mapsr ands given by

r(p, t) = ψ(p, t), s(p, t) = p,

p ∈ T
2, the space of units beingT2. The associated crossed product algebra

O := O(T2) � R

is the∗-algebra generated by the unitary operatorsU1, U2 andVt acting in the Hilbert space
L2(T2) given by

(U1ξ)(ϑ1, ϑ2) = eiϑ1 · ξ(ϑ1, ϑ2), (U2ξ)(ϑ1, ϑ2) = eiϑ2 · ξ(ϑ1, ϑ2),

(Vt ξ)(ϑ1, ϑ2) = ξ(ϑ1 + at, ϑ2 + bt) (3.2)

∀ξ ∈ L2(T 2). Let ekl = ei(kϑ1+lϑ2) (k, l ∈ Z) be the basis of trigonometric polynomials of
L2(T2). Obviously, from(3.2) it follows that:

U1ekl = ek+1,l , U2ekl = ek,l+1, Vt ekl = ei(ak+bl)t ekl. (3.3)

It is now immediate to show the following proposition.

Proposition 1. The unitary operatorsU1, U2, andVt satisfy

U1U2 = U2U1, (3.4)

VtU1 = eiat U1Vt , (3.5)

VtU2 = eibt U2Vt , (3.6)

VtVs = Vt+s , t, s ∈ R. (3.7)
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Remark 1. For rationala/b = m/n, m, n relative prime, there is an additional relation

V
2π
√

m2+n2 = V0 = 1,

2π
√

m2 + n2 is the smallest value oft such thatVt = V0 = 1 and any other sucht is an
integer multiple of it.

Proposition 2. The∗-algebraO(T2)�R is isomorphic toC〈u1, u2, vt 〉/J ,whereC〈u1, u2,

vt 〉 is the free associative unital∗-algebra generated byu1, u2 andvt , t ∈ R, and J is the
∗-ideal generated by(3.4)–(3.7)and unitarity conditions for the generators.

Proof. By universality ofC〈u1, u2, vt 〉/J , there exists a homomorphismπ of this al-
gebra ontoO(T2) � R sending the corresponding generators onto each other. Now, by
(3.4)–(3.7), a general elementa of C〈u1, u2, vt 〉/J is a linear combination of the mono-
mialsvtj u

k
1u

l
2, for sometj ∈ R (with j �= j ′ ⇒ tj �= tj ′ ), k, l ∈ Z, a = ∑

ajklvtj u
k
1u

l
2

(finite sum). We first show that allVt are independent.Vt =
∑

j bjVtj is equivalent to 1=∑
bj ei(ka+bl)(tj−t) ∀k, l. Sincea/b is irrational,{ak+bl|k, l ∈ Z} is dense inR, and one can

conclude 1=∑
bj eix(tj−t) ∀x ∈ R. But 1 and eix(tj−t) are orthogonal as almost-periodic

functions, see[24], and therefore linearly independent. Then alsoVtU
k
1Ul

2 andVt ′U
k
1Ul

2

(t �= t ′) are linearly independent. SinceVtU
k
1Ul

2 andVt ′U
k′
1 Ul′

2 ((k, l) �= (k′, l′)) shift a dif-
ferent number of steps in the above basisekl they are obviously independent. In other words,
the monomialsVtU

k
1Ul

2 constitute a basis inO(T2) � R. If π(a) = ∑
ajklVtj U

k
1Ul

2 = 0
we haveajkl = 0 andπ is a bijection. �

In analogy with the definition given beforeTheorem 1, puttingM = T
2 andΓ = R, we

define the crossed product

A := C∞(T2) � R (3.8)

as a∗-subalgebra ofB(L2(T2)).

Remark 2. We can introduce a set of seminorms onO = O(T2) � R as follows. Let
O(T2) ⊂ O be the∗-subalgebra generated byU1 andU2. We define a family(pn)n∈N of
seminorms on this subalgebra by

pn

∑
jk

ajkU
j

1 Uk
2

 = sup
j,k∈Z

(1+ |j | + |k|)n|ajk|.

It is well known[25, 22.19.2–22.19.4]that the completion ofO(T2) in the corresponding
Fréchet topology isC∞(T2). Now we define seminorms onO by

p�n

∑
jkl

ajklVtj U
k
1Ul

2

 = pn

∑
jkl

ajklU
k
1Ul

2

 .

Then it is easy to show thatA is the completionO with respect to the Fréchet topology
defined by the family of seminormsp�n . To this end, one first notes that every element of
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A is a finite sum of productsfVt , f ∈ C∞(T2). By the above,f is a limit of elementsfk

of O(T2) with respect topn, and by the definition ofp�n it is obvious thatfVt is the limit
of fkVt .

Let us now describe the Hilbert space of the spectral triple ofTheorem 1for the Kronecker
foliation.

Here, bothV andN are one-dimensional, with local frames consisting each of one vector
∂/∂x andn = (∂/∂y) + V , respectively. Letτ andν denote the corresponding elements
of the dual frames. ThenE = ∧

V ∗ ⊗∧
N∗ consists of four one-dimensional subspaces

of elements of degrees(0, 0), (1, 0), (0, 1), and(1, 1), with local frames1, τ , ν, τ ⊗ ν,
respectively. The natural choice of translation invariant (under the natural action ofR

2 on
T

2) Euclidean fibre metrics makes these frame elements mutually orthogonal unit vectors
in L2(T2, E). We may identify

L2(T2, E) = L2(T 2) ⊕ L2(T 2) ⊕ L2(T 2) ⊕ L2(T 2)

with ekl1 → (ekl, 0, 0, 0), . . . , eklτ ⊗ ν → (0, 0, 0, ekl).

Remark 3. Since the generators act, according to(3.2), componentwise inL2(T2, E), the
crossed product algebra ofTheorem 1coincides with(3.8).

We choose the transversal subspaceH in the simplest way, i.e. we puthi
k = 0. Thus,

H is generated by the coordinate vector field∂/∂y. Then the general formulae of the
foregoing section lead (with some easy computations for the adjoints) to the following
expressions:
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with f ∈ C∞(T2). To prove, e.g.,

d∗H(f τ ⊗ ν) = ∂f

∂y
τ,

we denote by(·|·) the scalar product inL2(T2, E) and observe that

(gτ |d∗H(f τ ⊗ ν)) ≡ (dH(gτ)|f τ ⊗ ν) =
(
−∂g

∂y
τ ⊗ ν|f τ ⊗ ν

)
= −

∫
∂g(x, y)

∂y
f (x, y) dx dy =

∫
g(x, y)

∂f (x, y)

∂y
dx dy

=
(

gτ

∣∣∣∣∂f∂y
τ

)
.

Note that all the above operators can also be written as matrix differential operators.

3.2. The first order signature operator as Dirac operator

We will first show that(C∞(T2) � R, L2(T2, E), Q̃), with Q̃ being the linear signature
operator

Q̃ = dL + d∗L + dH + d∗H,

is a spectral triple of dimension 2. Using the foliation chart(x, y) and the local frame
{1, τ, ν, τ ⊗ ν}, this operator can be written as

Q̃ =



0 − ∂

∂x
− ∂

∂y
0

∂

∂x
0 0

∂

∂y

∂

∂y
0 0 − ∂

∂x

0 − ∂

∂y

∂

∂x
0


.

Its eigenvalues are given by

λ±kl = ±
√

(ak+ bl)2 + (al − bk)2 (3.9)

with k, l ∈ Z and it is straightforward to see that

e+1
kl = −i

bk− al

λ+kl

e1
kl + e3

kl + i
ak+ bl

λ+kl

e4
kl, e+2

kl = −i
ak+ bl

λ+kl

e1
kl + e2

kl + i
al − bk

λ+kl

e4
kl,

e−1
kl = e1

kl − i
ak+ bl

λ+kl

e2
kl + i

al − bk

λ+kl

e3
kl, e−2

kl = i
al − bk

λ+kl

e2
kl + i

ak+ bl

λ+kl

e3
kl + e4

kl,
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with

e1
kl =


ekl

0

0

0

 , e2
kl =


0

ekl

0

0

 , e3
kl =


0

0

ekl

0

 , e4
kl =


0

0

0

ekl

 ,

form a complete set of eigenvectors.

Proposition 3. (C∞(T2) � R, L2(T2, E), Q̃) is a spectral triple of dimension2.

Proof. The eigenvalues(3.9) of Q̃ have finite multiplicity, tend to infinity fork, l → ∞
and have no finite accumulation point. Thus, the resolvent ofQ̃ is compact. Since

[Q̃, Vt ] = 0, (3.10)

boundedness of the commutators ofQ̃ with elements of the algebra follows from the fact
that

[Q̃, fVt ] = f [Q̃, Vt ] + [Q̃, f ]Vt =



0 −∂f

∂x
−∂f

∂y
0

∂f

∂x
0 0

∂f

∂y

∂f

∂y
0 0 −∂f

∂x

0 −∂f

∂y

∂f

∂x
0


Vt

is a bounded matrix multiplication operator inL2(T2, E). In order to see that thenth eigen-
value of|Q̃| is of order

√
n notice first that the eigenvalues of|Q̃| areλ+kl , with multiplicity

4× (number of(k, l) ∈ Z
2 leading to the sameλ+kl). The number of eigenvalues with abso-

lute value less than someR > 0 is then 4×(number of integer lattice points inside a circle of
radiusR), i.e. equal to 4×(the areaπR2) up to lower order terms inR. (Recall that(x, y)  →
(ϑ1, ϑ2) is orthogonal.) This proves the claim. �

In order to describe the differential algebraΩ
Q̃

(O(T2) � R), we denote, as in formulae

(2.1) and (2.2), by π1 andπ2 the extensions ofπ to universal one and two forms. Since
π is faithful by Proposition 2, Ω1

Q̃
(O(T2) � R) is isomorphic toπ1(Ω1(O(T2) � R)),

with duj  → [Q̃, Uj ], dvt  → [Q̃, Vt ], andΩ2
Q̃

(O(T2) � R) = Ω2(O(T2) � R)/(kerπ2 +
d(kerπ1)) � π2(Ω2(O(T2) � R))/π2(d(kerπ1)).

Let us first note that, under the obvious identificationL2(T2, E) � C
4 ⊗ L2(T2) the

generatorsU1, U2, Vt of O(T2) and its commutators with̃Q can be written as follows:

U1 = 1 ⊗ s1, U2 = 1 ⊗ s2, Vt = 1 ⊗ vabt, (3.11)



60 R. Matthes et al. / Journal of Geometry and Physics 46 (2003) 48–73

wheres1ekl = ek+1,l , s2ekl = ek,l+1, vabtekl = ei(ak+bl)t ekl, and

[Q̃, U1]=


0 a −b 0

−a 0 0 b

b 0 0 a

0 −b −a 0

⊗ s1, [Q̃, U2]=


0 b a 0

−b 0 0 −a

−a 0 0 b

0 a −b 0

⊗ s2.

(3.12)

Using this representation, together with [s1, s2] = 0,s1vabt = eiat vabts1,s2vabt = eibt vabts2,
it is easy to show the following lemma.

Lemma 2.

Uj [Q̃, Uk] = [Q̃, Uk]Uj ∀j, k ∈ {1, 2}, (3.13)

Vt [Q̃, U1] = eiat[Q̃, U1]Vt , Vt [Q̃, U2] = eibt[Q̃, U2]Vt , (3.14)

[Q̃, U1][Q̃, U2] = −[Q̃, U2][Q̃, U1]. (3.15)

Explicitly, we have

[Q̃, U1][Q̃, U2] =


0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0

⊗ s1s2. (3.16)

Proposition 4.

(i) Ω1
Q̃

(O(T2) � R) is a free left(and right) O(T2) � R-module with basis{du1, du2}.
Its bimodule structure is determined by

uj duk = duk uj ∀j, k ∈ {1, 2}, (3.17)

vt du1 = eiat du1vt , vt du2 = eibt du2vt . (3.18)

Moreover,

dvt = 0. (3.19)

(ii) Ω2
Q̃

(O(T2) � R) is a free left(and right) O(T2) � R-module with basis{du1 du2},
with

du1 du2 = −du2 du1. (3.20)

(iii) Ωk

Q̃
(O(T2) � R) = 0 for k ≥ 3.

Proof. For the proof we refer to[26]. �
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Remark 4. One can define a first order differential calculus for the algebraA = C∞(T2)�

R in the following way. LetΩ1
Q̃

(A) be the free leftA-module with basis{du1, du2}.
Equipped with the product of the topologies defined by the sequence of seminormsp�n ,
Ω1

Q̃
(A) is a free left topologicalA-module. One turnsΩ1

Q̃
(A) into a rightA-module by

definingaj duj uk := ajuk duj for j, k ∈ 1, 2, a1 du1 vt := eiat a1vt du1 anda2 du2 vt :=
eibt a2vt du2 (aj ∈ A), and extending this by continuity. This givesΩ1

Q̃
(A) the structure of

a topological bimodule containingΩ1
Q̃

(O) as a dense subbimodule. It is also not difficult

to see that the differential can be extended to a continuous map d :A → Ω1
Q̃

(A). Anal-

ogously, one can define a topologicalA-bimoduleΩ1
Q̃

(A) such that the natural mappings

Ω1
Q̃

(A) × Ω1
Q̃

(A) → Ω2
Q̃

(A) and d :Ω1
Q̃
→ Ω2

Q̃
(A) are continuous. We conjecture that

the differential calculusΩ
Q̃

(A) so constructed coincides with the calculus (to be denoted

by the same symbol) resulting from the spectral triple(A, L2(T2, E), Q̃).

3.3. The mixed signature operator

Let us now consider the mixed signature operatorQ given by formula(2.5). In matrix
representation, we have

Q =



∂2

∂x2
0

∂

∂y
0

0 − ∂2

∂x2
0 − ∂

∂y

− ∂

∂y
0 − ∂2

∂x2
0

0
∂

∂y
0

∂2

∂x2


.

In order to diagonalize this operator, we have to solve the eigenvalue problem

Q


f1

f2

f3

f4

 = λ


f1

f2

f3

f4

 (3.21)

with fi ∈ L2(T2, E). The operatorQ is already block-diagonal and acts both in the space
of (0, 0)- and(0, 1)-forms and in the space of(1, 1)- and(1, 0)-forms in the same way.
It suffices to diagonalize one block. Withg = f1 + f3 and h = f1 − f3 one arrives
at

∂2h

∂x2
+ ∂h

∂y
= λg,

∂2g

∂x2
− ∂g

∂y
= λh,
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and the ansatz

g =
∑

k,l∈Z
ηkl e

i(kϑ1+lϑ2), h =
∑

k,l∈Z
χkl e

i(kϑ1+lϑ2)

leads to

((a2k2 + 2abkl+ b2l2)2 + (bk− al)2)χkl = λ2χkl,

which gives the eigenvalues

λkl± = ±
√

(ak+ bl)4 + (bk− al)2.

One easily concludes that eigenvectors to the eigenvaluesλkl± are of the form

hkl = ekl, gkl± = γkl±ekl

with

γkl± = −(ak+ bl)2 + i(al − bk)

λkl±
.

The eigenvectors of the original problem(3.21)are

f1kl± = 1
2(gkl± + hkl) = 1

2(1+ γkl±)ekl, f3kl± = 1
2(gkl± − hkl) = 1

2(γkl± − 1)ekl,

or, written as elements ofL2(T2, E),

e
(1)
kl± = 1

2ekl((γkl± + 1)1 + (γkl± − 1)ν).

If we assume that the metrics are chosen so that the frame elements1, τ, ν, τ ⊗ ν are or-
thonormal, these vectors are already orthonormal (note that|γkl±| = 1). The same argument
yields another set

e
(2)
kl± = 1

2ekl((γkl± + 1)τ ⊗ ν + (γkl± − 1)τ )

of eigenvectors to the same eigenvaluesλkl±. Note that the eigenvalue 0 appears only
for k = l = 0. In that case, the eigenvalue equations decouple, and we get four inde-
pendent eigenvectors1, τ, ν, τ ⊗ ν. In order to see that these vectors together with the
e
(1,2)
kl± form an orthonormal basis ofL2(T2, E), it is sufficient to see that all the vectors

ekl1, eklτ, eklν, eklτ ⊗ν are linear combinations of the foregoing vectors. This follows from
the fact that the matrix(

γkl+ + 1 γkl+ − 1

γkl− + 1 γkl− − 1

)
is always invertible (its determinant being−4γkl+).

Thus, we have found the spectral decomposition of the selfadjoint operatorQ. Its un-
boundedness is reflected in the unboundedness of theλkl±. It is now easy to write down
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also the spectral decomposition of the corresponding Dirac operatorD: applying(2.7) for
nonzero eigenvalues gives

De(1,2)
kl± = ±

√
λkle

(1,2)
kl± ,

whereλkl is the positive rootλkl+. Putting e
(1)
00+ = 1, e

(1)
00− = ν, e

(2)
00+ = τ ⊗ ν and

e
(2)
00− = τ , the formula definesD also on the kernel ofQ (cf. (2.6)), and gives the spectral

decomposition ofD.
Defining

η
(1,2)
kl± := 1

2(e
(1,2)
kl+ ± e

(1,2)
kl− ),

one finds

U1η
(1,2)
kl+ = η

(1,2)
k+1,l+, (3.22)

U1η
(1,2)
kl− = γkl

γk+1,l

η
(1,2)
k+1,l−, (3.23)

U2η
(1,2)
kl+ = η

(1,2)
k,l+1,+, (3.24)

U2η
(1,2)
kl− = γkl

γk,l+1
η

(1,2)
k,l+1,−, (3.25)

Vtη
(1,2)
kl± = ei(ka+lb)t η

(1,2)
kl± , (3.26)

Dη
(1,2)
kl± =

√
λklη

(1,2)
kl∓ . (3.27)

FromTheorem 1or by direct computation using(3.22)–(3.27)one gets the following propo-
sition.

Proposition 5. (C∞(T2) � R, L2(T2, E), D) is a spectral triple of dimension3.

Next, one would like to describe the differential calculusΩD related to this spectral triple.
Let us first show that the first order calculus for the restriction of the spectral triple to the
subalgebraC∞(T2) is the universal one. To begin with, we have the following lemma.

Lemma 3. Letp, q, r, s ∈ Z. Then we have

Ur
1U

p

2 [D, Us
1U

q

2 ]η(1,2)
kl± =

√
λk+s,l+qγk+s,l+q−

√
λklγkl

γk+r+s,l+p+q

η
(1,2)
k+r+s,l+p+q∓, [D, Vt ]=0.

Moreover,

Vt [D, U1] = eiat[D, U1]Vt , Vt [D, U2] = eibt[D, U2]Vt . (3.28)

Proof. By direct computation using(3.22)–(3.27). �

From Theorem 1we know that the particular choiceΓ = 1 gives rise to a spectral
triple over C∞(T2). Let us now first investigate the corresponding differential calculus
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ΩD(O(T2)). By faithfulness of the representation, we can again identifyΩ1
D(O(T2)) with

a subspace ofB(L2(H)). We have the following proposition.

Proposition 6. The first order differential calculusΩ1
D(O(T2)) is freely generated as a left

O(T2)-module by the elements[D, Us
1U

q

2 ] (s, q ∈ Z).

Proof. We show that no nontrivial relations betweenUs
1U

q

2 and commutators [D, Ut
1Ur

2]
exist. Let us first consider relations involvingD andU1 only. FromLemma 3it follows for
p = q = 0 that

Ur
1[D, Us

1]η(1,2)
kl± =

√
λk+s,lγk+s,l −

√
λklγkl

γk+r+s,l

η
(1,2)
k+r+s,l∓.

Using the Leibniz rule and the fact that different overall powers ofU1 are independent we
find that nontrivial relations would be of the form

s−1∑
m=0

amUm
1 [D, Us−m

1 ] = 0 (3.29)

for s ∈ N. Applying (3.29)to η
(1,2)
n0± (n = k, . . . , k + s − 1), we get the following system of

equations:∑s−1
j=0 aj (

√
λk+j+1,0γk+j+1,0 −

√
λk0γk0) = 0

...∑s−1
j=0 aj (

√
λk+j+s,0γk+j+s,0 −

√
λk+s−1,0γk+s−1,0) = 0.

For the discussion of this system of equations it is useful to define a functionh onZ putting

h(i) =
√

λi0γi0 −
√

λi−1,0γi−1,0.

Lemma 4. We have∣∣∣∣∣∣∣∣
h(i0) · · · h(i0 + k)

...
. . .

...

h(ik) · · · h(ik + k)

∣∣∣∣∣∣∣∣ �= 0

for all k ∈ N andi0, . . . , ik ∈ Z.

Proof. SeeAppendix A. �

Thus, there are no relations involvingU1 andD besides the ones coming from the Leibniz
rule. In the general case we are looking foramn ∈ C such that

s−1∑
m=0

q−1∑
n=0

amnU
m
1 Un

2 [D, Us−m
1 U

q−n

2 ] = 0.



R. Matthes et al. / Journal of Geometry and Physics 46 (2003) 48–73 65

Again, we are led to the consideration of a homogeneous linear system of equations for
theamn. The corresponding matrix of coefficients is an(sq×sq)-matrix with general matrix
element

Ck,(m,n) = (
√

λk+s−m,q−nγk+s−m,q−n −
√

λk0γk0)

(k = 1, . . . , sq). In analogy to the case discussed above we have the following lemma.

Lemma 5. Let s, q ∈ N be fixed. Then we have

det(Ck,(m,n)) �= 0.

Proof. The proof is a straightforward generalization of the proof ofLemma 4to the case
of functions defined onZ2, see[29]. �

The proof of the proposition follows now immediately from the fact that between the
elements [D, Us

1U
q

2 ] there are no relations besides the ones coming from the Leibniz rule.

Unfortunately, we were not able to derive more relations of the type(3.28) between
commutators ofD with some generator and other generators (up to such relations resulting
from applying [D, ·] to (3.4)–(3.7)and the unitarity condition, using the derivation property).
The difficulty comes from the fact thatλkl andγkl contain both second and fourth powers
of k andl under the square root, the latter stemming from the quadratic part of the mixed
signature operatorQ. This leads us to the following conjecture.

Conjecture 1. The bimoduleΩ1
D(C∞(T2) � R) is generated bydu1 anddu2 and is de-

scribed by two relations

vt du1 = eiat du1vt , vt du2 = eibt du2vt .

Let us note that we could choose another diffeomorphism group, restricting the action ofR

to the subgroupZ. Then, the generatorsVt (orvt ) would be reduced to one generatorV1 = V

(v1 = v), and all the above formulae remain, replacing alwaysVt (vt ) by some power ofV
(v). However, we would not get rid of the difficulties related to the differential calculus.

Let us now turn to the Chern character ch∗(A,H, D) of the spectral triple. We first obtain
from (3.27)that the operatorF = D/|D| acts in the basisη(1,2)

kl± as follows:

Fη
(1,2)
kl± = η

(1,2)
kl∓ . (3.30)

Therefore, we find

[F, Vt ] = 0, Ur
1U

p

2 [F, Us
1U

q

2 ]η(1,2)
kl± = γk+s,l+q − γkl

γk+r+s,l+p+q

η
(1,2)
k+r+s,l+p+q∓. (3.31)

Since the spectral triple is 3-summable we get (cf.(2.9))

ch∗(A,H, D)(a0, a1, a2, a3) = λ3 Tr(a0[F, a1][F, a2][F, a3]), (3.32)

for all ai ∈ C∞(T2) � R, with λ3 = −(3/4)
√

2π i. The above commutators(3.32)act as
weighted shift operators and therefore we have

ch∗(A,H, D) = 0. (3.33)
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We note that the explicit form of the spectral triple, in particular the construction of the eigen-
value basis for the Dirac operator, makes it possible to calculate the right-hand side of the
local index formula of Connes and Moscovici[16] giving also zero for the Chern character.

In order to calculate the Dixmier trace of the Dirac operatorD we have to find the
homogeneous part of order−3 of its symbol (in the calculus of hypoelliptic operators
ψDO′). It is easy to see (using[16, Formula (26)]) that

σ(D2k)(ξv, ξn) = (ξ4
v + ξ2

n )k/214,

σ (D2k+1)(ξv, ξn) = (ξ4
v + ξ2

n )(2k−1)/4


−ξ2

v 0 iξn 0

0 ξ2
v 0 −iξn

−iξn 0 ξ2
v 0

0 iξn 0 −ξ2
v

 (3.34)

for all k ∈ Z. For the degree of homogeneity one finds

σ(Dm)(λξv, λ2ξn) = λmσ(Dm)(ξv, ξn) (3.35)

for m ∈ Z, λ ∈ R
∗+. Therefore, we haveσ−3(D

k) = 0 for all integersk �= −3 and from
(2.12) and (2.13)we find

Trω(Dk) = 0 (3.36)

for all k ∈ Z, k �= −3. Since trσ−3(D
−3)(x, ξ) = 0, see(3.34), we also get

Trω(D−3) = 0.

We remark that|D|−3 has the nonvanishing Dixmier trace, cf.[16, Formula (66)]

Trω(|D|−3) = 8

3
√

2π
Γ

(
1

4

)2

. (3.37)

4. Discussion

With the obtained results one can try and discuss simple noncommutative field theoretical
models. Unfortunately, in view of the results on the differential calculus,Proposition 6and
Conjecture 1, a gauge theory would contain an infinite tower of fields. For the spectral
triple with the linear signature operator̃Q as Dirac operator, which has a nice differential
calculus, one would expect to get gauge theories similarly as in[27]. On the other hand,
the Dixmier trace can be used to construct a candidate for a gravity action by considering
Trω(D2−d), whered is the dimension of the spectral triple, see[4,5]. However, for our
three-dimensional triple we find from(3.36)

Trω(D2−3) = Trω(D−1) = 0. (4.1)

The above discussion indicates that the procedure of Connes and Moscovici[16] makes it
possible to construct and discuss spectral triples for algebras related to foliations of smooth
manifolds quite explicitly. Of course, the discussion of the Kronecker foliation can be only a
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first step towards a detailed understanding of this important class of algebras. We remark that
this foliation is completely missing the essential feature of holonomy. It will be interesting
to see whether and to what extent the occurrence of holonomy (e.g. for the Reeb foliation)
will change the properties of the spectral triples.
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Appendix A. Proof of Lemma 4

The proof of this lemma rests on the following characterization of functionsf defined
by determinants of Hankelian type, see[28], such that∣∣∣∣∣∣∣∣

f (i0) · · · f (i0 + k)

...
. . .

...

f (ik) · · · f (ik + k)

∣∣∣∣∣∣∣∣ = 0 (A.1)

∀k ∈ N andi0, . . . , ik ∈ Z. We have the following theorem.

Theorem A.1. A function f defined onZ fulfils (A.1) if and only if it is of one of the following
two types:

f1(i) = βi
k−1∑
j=0

αj ij , (A.2)

f2(i) =
k∑

j=1

αjβi
j (A.3)

with α, β andβj ∈ C.

Proof. By induction one easily shows thatf1 andf2 fulfil (A.1).
Let us now assume that a functionf defined onZ fulfils (A.1) for somek ∈ N. We choose

i1 = i0 + 1, . . . , ik = i0 + k and letf (i0), . . . , f (i0 + 2k − 1) denote the corresponding
values off . Thenf (i0 + 2k) has to fulfil∣∣∣∣∣∣∣∣∣∣

f (i0) f (i0 + 1) · · · f (i0 + k)

f (i0 + 1) f (i0 + 2) · · · f (i0 + k + 1)

...
...

. . .
...

f (i0 + k) f (i0 + 1) · · · f (i0 + 2k)

∣∣∣∣∣∣∣∣∣∣
= 0,
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provided that∣∣∣∣∣∣∣∣∣∣
f (i0) f (i0 + 1) · · · f (i0 + k − 1)

f (i0 + 1) f (i0 + 2) · · · f (i0 + k)

...
...

. . .
...

f (i0 + k − 1) f (i0 + k) · · · f (i0 + 2k − 2)

∣∣∣∣∣∣∣∣∣∣
�= 0. (A.4)

(We may assume without loss of generality that(A.4) holds. In[29], it is shown that in
the other case one is led to the casek − 1.) Proceeding further we find that the 2k values
f (i0), . . . , f (i0+2k−1) determinef completely. Now we show that this function is either
of type(A.3) or (A.2).

Let first the constantsf (i0), . . . , f (i0 + 2k − 1) be such that the following condition
holds:

l+1∑
j=0

βl+1−j f (i + j)(−1)j

(
l + 1

j

)
= 0 (A.5)

for someβ ∈ C, l ∈ {0, . . . , k − 1} and alli = i0, . . . , i0 + 2k − l − 1. We show that the
corresponding function onZ is of the form(A.2). Suppose thatβ ∈ C is a solution of(A.5).
Then we find constantsαi as follows. Definingg(i) := f (i)/βi (β �= 0), we can always
find αi (i = 0, . . . , l) as solutions of the following linear system of equations:

g(i0) = α0 + α1i0 + · · · + αli
l
0,

g(i0 + 1) = α0 + α1(i0 + 1) + · · · + αl(i0 + 1)l

...

g(i0 + l) = α0 + α1(i0 + l) + · · · + αl(i0 + l)l

by

αi = 1

∆

∣∣∣∣∣∣∣∣∣∣
1 i0 · · · ii−1

0 g(i0) ii+1
0 · · · il0

1 i0 + 1 · · · (i0 + 1)i−1 g(i0 + 1) (i0 + 1)i+1 · · · (i0 + 1)l

...
...

...
...

...
. . .

...

1 i0 + l · · · (i0 + l)i−1 g(i0 + l) (i0 + l)i+1 · · · (i0 + l)l

∣∣∣∣∣∣∣∣∣∣
with

∆ =

∣∣∣∣∣∣∣∣∣∣
1 i0 · · · il0
1 i0 + 1 · · · (i0 + 1)l

...
...

. . .
...

1 i0 + l · · · (i0 + l)l

∣∣∣∣∣∣∣∣∣∣
= (−1)l(l+1)/2

l∏
j=1

j ! �= 0.

Now that we have chosen the constantsβ andα0, . . . , αl such that

f (i0 + j) = f1(i0 + j)
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is fulfilled, for all j = 0, . . . , l, it remains to be shown that we also have

f (i0 + l + 1) = f1(i0 + l + 1).

But
r∑

j=0

(−1)j

(
r

j

)
j s = 0

∀s = 0, . . . , r − 1 (which follows from evaluating thesth derivative off (x) = (x − 1)r =∑r
j=0

(
r

j

)
(−1)j xr−j atx = 1). Now we find

l+1∑
j=0

βl+1−j (−1)j

(
l + 1

j

)
f1(i + j)

=
l+1∑
j=0

βl+1−jβi+j (−1)j

(
l + 1

j

)
l∑

m=0

αm(i + j)m

= βl+i+1
l+1∑
j=0

l∑
m=0

m∑
n=0

αm(−1)j

(
l + 1

j

)(
m

n

)
injm−n

= βl+i+1
l∑

m=0

αm

m∑
n=0

(
m

n

)
in

l+1∑
j=0

(−1)j

(
l + 1

j

)
jm−n = 0.

Therefore, we have

l+1∑
j=0

(−1)jβl+1−j

(
l + 1

j

)
(f (i0 + j) − f1(i0 + j))

= (−1)l+1(f (i0 + l + 1) − f1(i0 + l + 1)) = 0,

i.e.

f (i0 + l + 1) = f1(i0 + l + 1).

Let us now consider the general case(A.3). Suppose thatf (i0), . . . , f (i0 + 2k − 1) are
chosen such that(A.5) does not hold. Then we have to solve the following system of
algebraic equations (where we have choseni0 = 0):

f (0) = C1 + · · · + Ck

f (1) = C1β1 + · · · + Ckβk

...

f (2k − 1) = C1β
2k−1
1 + · · · + Ckβ

2k−1
k ,

which can always be done using Gröbner basis techniques, see[29]. �
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Remark A.1. If the parametersf (i0), . . . , f (i0 + 2k − 1) satisfy

f (i0 + l) = f (i0 + 1)l

f (i0)l−1

∀l = 0, . . . , 2k − 1, then one easily checks that

β = f (i0 + 1)

f (i0)

fulfils (A.5) and the constantsαi are given by

α0 = f (i0)
i0+1

f (i0 + 1)i0
, α1 = · · · = αk−1 = 0.

The proof ofLemma 4follows now immediately from the observation that the function

h(i) =
√

λi0γi0 −
√

λi−1,0γi−1,0,

is obviously not of the form(A.2) or (A.3). �

Appendix B. The differential algebra for the irrational rotation algebra

Let us first recall, see[1,18], that the algebra of the noncommutative torus is generated
by two unitariesu, v subject to the relation

uv = e−2π iθ vu.

The algebra can be considered on the purely∗-algebraic level (Laurent polynomials inu, v)
where a general element is a finite linear combination of ordered polynomialsukvl , k, l ∈ Z,
on the level of smooth functions, where the general element is a series

∑
aklu

kvl with coef-
ficientsakl subject to the condition that(|k|n + |l|n)|akl| are bounded for alln > 0. Finally,
there is also theC∗ version, defined, e.g. by using irreducible representations for performing
a norm closure of the polynomial algebra. It is well known that both the polynomial and the
C∗-algebra can be interpreted as convolution algebras of the reduced holonomy groupoid
of the Kronecker foliation, whichθ being the angle defining the direction of the leaves. We
denote theC∗-algebra byAθ , the smooth algebra byAθ and the polynomial algebra byOθ .
There exists a tracial stateτ onAθ , given by

τ
(∑

aklu
kvl
)
= a00,

and there are two canonical derivationsδ1 andδ2 onAθ defined by

δ1(u
kvl) = 2π ikukvl, δ2(u

kvl) = 2π ilukvl.

With these data, the well-known spectral triple is defined as follows. First, the tracial state
τ is used to define the GNS Hilbert spaceHτ . Secondly, the derivationsδ1 andδ2 give
rise to unbounded operators onHτ , whose domain of definition is the image ofAθ in
Hτ (under the GNS procedure). The same is true for∂ := (1/

√
2π)(δ1 − iδ2). Now take
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H := Hτ ⊕Hτ and

D :=
(

0 ∂

∂∗ 0

)
as Hilbert space and generalized Dirac operator of a spectral triple overAθ . The dimension
of this spectral triple is known to be 2. The corresponding differential calculusΩD was
described by Connes in terms of elements ofH. We have the following description of
ΩD(Oθ ) in terms of relations between the generators of the algebra and their differentials.

Proposition B.1.

(i) Ω1
D(Oθ ) is a free left(or right)Oθ -module with basis{du, dv}. The bimodule structure

of Ω1
D(Oθ ) is given by

u du = du u, u∗ du = du u∗, u du∗ = du∗ u, u∗ du∗ = du∗ u∗,
(B.1)

v dv = dv v, v∗ dv = dv v∗, v dv∗ = dv∗ v, v∗ dv∗ = dv∗ v∗,
(B.2)

v du = e2π iθ du v, u dv = e−2π iθ dv, (B.3)

v du∗ = e−2π iθ du∗ v, u∗ dv = e2π iθ dv u∗, (B.4)

v∗ du = e−2π iθ du v∗, u dv∗ = e2π iθ dv∗u. (B.5)

(ii) Ω2
D(Aθ ) is a free left(or right) Aθ -module with basis{du dv}. The relation

du dv = −e2π iθ dv du (B.6)

is fulfilled.
(iii) Ωk

D(Aθ ) = 0 for k ≥ 3.

Proof.

(i) τ is a faithful state, thus the GNS representationπ is faithful. Consequently,Ω1
D(Oθ ) �

π(Ω1(Oθ )), where the isomorphism sends differentials to commutators withD. To
verify the relations(B.1)–(B.5)it is therefore sufficient to consider the images of these
expressions underπ . If we denote bya the element corresponding toa ∈ Oθ in Hτ ,
it is immediately verified that theekl := ukvl form an orthonormal basis inHτ . From
this basis we obtain in an obvious way an orthonormal basis{e+kl , e−kl } ofHτ ⊕Hτ (to
be precise,e+kl = (ekl, 0), e−kl = (0, ekl)). In this basis,U := π⊕π(u), V := π⊕π(v),
D act as follows:

U(e±kl ) = e±k+1,l , V (e±kl ) = e2π ikθ e±k,l+1, (B.7)

D(e±kl ) =
√

2π(±ik + l)e∓kl . (B.8)



72 R. Matthes et al. / Journal of Geometry and Physics 46 (2003) 48–73

Now, it is straightforward to verify the relations(B.1)–(B.5) (with U, V, [D, ·] in-
stead ofu, v, d). From these and the Leibniz rule (also taking into account unitarity
of the generatorsu, v), it is obvious that [D, U ] and [D, V ] generateπ(Ω1(Oθ ))

as a left (or right)Oθ -module. To prove that it is a freely generated left module,
assumeP [D, U ] +Q[D, V ] = 0 with P, Q ∈ π ⊕ π(Oθ ). It follows from (B.7) and
(B.8) that

[D, U ](e±kl ) = ±i
√

2πe∓k+1,l , (B.9)

[D, V ](e±kl ) = e2π ikθ
√

2πe∓k,l+1. (B.10)

Therefore, terms inP [D, U ]+Q[D, V ] can only compensate if they contain the same
overall number ofU andV . This means that it is sufficient to consider terms of the
form α = pUnV m+1[D, U ] + qUn+1V m[D, V ], p, q ∈ C. Acting one+kl , we obtain

αe+kl =
√

2π(e2π i(k+1)(m+1)θ ip + e2π ikmθ q)e−k+n+1,l+m+1 = 0,

which is equivalent to

p e2π i(k+m+1) + q = 0.

Since this should be true for allk, it follows thatp = q = 0.
(ii) Differentiating the relations(B.1) and (B.2)gives immediately du du = dv dv =

du∗ du∗ = dv∗ dv∗ = 0. Analogously,(B.3) leads to(B.6). Thus, we know already
that du dv generates the two forms as a left (or right)Aθ -module. It remains to show
that it is freely generated.

Let us recall that

Ω2
D(Oθ ) � π(Ω2(Oθ ))

π(dJ 1)
,

whereJ 1 = kerπ ∩ Ω1(Oθ ). Thus, any relation true inπ(Ω2(Oθ )) is also true in
π(Ω2

D(Oθ )). Now, a similar argument as in the proof ofProposition 4(see[26]) shows
that: (i) implies thatJ 1 coincides with theOθ -subbimodule generated the elements
corresponding to the relations(B.1)–(B.5). It follows that dJ 1 is a finite sum of ele-
ments of the forma dbc with a, c ∈ Oθ andb one of the elements(B.1)–(B.5). Now,
one shows by a direct computation thatπ(db) ∈ π(Oθ ) if b is one of the elements
(B.1)–(B.5), whereasπ(db) = 0 if b is one of the remaining elements. It follows
thatπ(dJ 1) = π(Oθ ). It remains to show that fromπ(a)[D, U ][D, V ] ∈ π(Oθ ) it
follows thata = 0. From the above formulae, it is now immediate that any element of
the algebra acts on thee±kl in a way not depending on+ or−, π(a)e±kl =

∑
λij e

±
ij , λij

independent on+ or−. On the other hand,

[D, U ][D, V ]e±kl = ±2π i e2π ikθ e±k+1,l+1,

from which (ii) follows immediately. �

Remark B.1. As in Remark 4, we can construct a topological versionΩD(Aθ ) of this
calculus (using seminormsqn(

∑
aklu

kvl) = supkl(1 + |k|n + |l|n)|akl|). A comparison



R. Matthes et al. / Journal of Geometry and Physics 46 (2003) 48–73 73

with the results of Strohmaier[30] shows that this gives indeed the calculusΩD(Aθ ) of the
spectral triple(Aθ ,H, D).
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